广州数学大讲坛第八期
第七十七讲——山东大学赵翀教授学术报告
题目:双圆盘Hardy商模的本质正规性和子模的Hilbert-Schmidt性
时间:2024年11月19日(星期二)下午14:30-15:30
地点:腾讯会议(会议ID:914-706-949,密码:241119)
报告人:赵翀 教授
摘要:I would like to talk our latest work on the essential normality of quotient modules over the polydiscs, and the Hilbert-Schmidtness of submodules. We prove that all the quotient modules in H2(D2), associated to the finitely generated submodules containing a distinguished homogenous polynomial, are essentially normal, which is the first result on the essential normality of non-algebraic quotient modules in H2(D2). Moreover, we obtain the equivalence of the essential normality of a quotient module and the Hilbert-Schmidtness of its associated submodule in H2(D2), in the case that the submodule contains a distinguished homogenous polynomial. As an application, we prove that each finitely generated submodule containing a polynomial is Hilbert-Schmidt, which partially gives an affirmative answer to a conjecture of R. Yang.
报告人简介:
赵翀,山东大学教授,2014年于复旦大学获得理学博士学位。研究方向为算子理论与算子代数,主要课题为复单位球和多圆盘上Hilbert模的本质正规性。近年来与合作者在多圆盘上的系列工作给出了(拟)齐次商模本质正规性的完全判别准则,完整回答了多圆盘上相应的Arveson问题。相关论文发表于Adv. Math., J. London Math. Soc., Sci. China. Math. 等数学期刊。目前主持国家自然科学基金面上项目一项。