学术报告1
时间:2021.5.19(周三),15:00-16:00
腾讯会议:437925918
https://meeting.tencent.com/s/MP9Ij1FFbwR9
报告题目:Rota-Baxter Turaev's Hopf group (co)algebras
摘要:We find the natural compatible condition between Rota-Baxter operators and Turaev's (Hopf) group-(co)algebras, which leads to the concept of Rota-Baxter Turaev's (Hopf) group-(co)algebra. Two characterizations of Rota-Baxter Turaev's group-algebras (abbr. T-algebras) are obtained. The relations among some related Turaev's group algebraic structures (such as (tri)dendriform T-algebras, Zinbiel T-algebras, pre-Lie T-algebras, Lie T-algebras, etc) are discussed, and meanwhile some interesting examples from the algebras of dimensions 2,3 and 4 are given. At last we prove that Rota-Baxter Poisson T-algebras can produce pre-Poisson T-algebras.
报告人:马天水副教授河南师范大学
报告人简介:马天水,东南大学理学博士,东北师范大学博士后,现为河南师范大学数学学院副教授、硕士研究生导师。主要从事Hopf代数理论的相关研究,已在SCI收录杂志发表论文30余篇。主持或参与完成国家自然科学基金3项,欧盟FUSION项目1项,省部级项目多项。曾获得河南省优秀硕士毕业论文指导教师(2017年、2018年)、河南省高等学校青年骨干教师等荣誉称号。
学术报告2
时间:2021.5.20(周四),9:00-10:00
腾讯会议:813928859
https://meeting.tencent.com/s/1ImNmCCs9jK2
报告题目:A characterization of algebras generated by idempotents
摘要:This talk is based on a joint work with Hu Wei, in which we study how to test an algebra is generated by idempotents. For finite dimensional algebras over a field, it turns out that these algebras can be characterized by their irreducible modules homologically. Particularly, we obtain that a finite dimensional algebra over an algebraically closed field is generated by idempotents if and only if $\Ext_A^1(S,S)=0$ for all $1$-dimensional $A$-modules $S$.
报告人:肖占魁副教授华侨大学
报告人简介:肖占魁,华侨大学副教授,硕士生导师。2010年博士毕业于北京理工大学,研究领域包括:典型群与量子群的不变量理论;有限维代数的表示理论与组合(包含其在博弈、运筹等领域的应用);非交换环理论与算子代数。曾与博士导师胡峻教授合作证明了(量子)辛群不变量理论的第二基本定理,在Sci. China Math.,Doc. Math.,J. Algebra,J. Pure Appl. Algebra等杂志上发表研究论文近30篇。