广州数学大讲坛第六期

第五十一讲——华东师范大学王勤教授学术报告


题目:Relative Poincare inequalities, metric embeddings into Banach spaces and higher index problems

时间:2024年9月9日(星期一)上午9:00-10:00

地点:腾讯会议(会议ID:814-803-192,会议密码:240909)

报告人:王勤 教授

摘要:Relative expanders are families of Cayley graphs whose metric geometry lies in between the geometry of a Hilbert space and that of a genuine expander. They were introduced by Arzhantseva and Tessera in terms of relative Poincare inequalities. In fact, these spaces do not coarsely embed into any uniformly curved Banach space introduced by Pisier. We show that certain relative expanders satisfy the coarse Baum-Connes conjecture and possesses operator K-theory amenability. In this lecture, we will discuss some of key ideas and results in this circle of developments.

报告人简介:

王勤,华东师范大学数学科学学院算子代数研究中心教授、博士生导师,主要从事算子代数、粗几何、非交换几何等领域的研究,在非交换几何的重要问题“粗Baum-Connes猜想”、“粗Novikov猜想”等方面取得了若干重要成果,曾入选教育部新世纪优秀人才支持计划、上海市曙光学者、上海市浦江学者。