广州数学大讲坛第三期
第二十八讲——浙江师范大学赖宁安教授学术报告
题目:Sharp lifespan estimate for the compressible Euler system with critical time-dependent damping in $R^2$
时间:2024年5月16日(星期四)下午15:00-16:00
地点:腾讯会议(会议ID:225-715-412,密码:0516)
报告人:赖宁安教授
摘要:We will talk about the long time existence to the smooth solutions of the compressible Euler system with critical time dependent damping in $\R^2$. The sharp lifespan estimate from below with respect to the small parameter of the initial perturbation is established. For this end, the vector fields $\widehat{Z}$ (defined below) are used instead of the usual one $Z$, to get better decay for the linear error terms. This idea may also apply to the long time behavior study of nonlinear wave equations with time-dependent damping. This is a joint work with Dr. Lv Cai and Wenze Su.
报告人简介:
赖宁安,浙江师范大学数学科学学院教授,博士生导师。主要研究方向为双曲型偏微分方程的大时间行为。在JMPA、JFA、CVPDE、Math. Z.、CPDE及中国科学等国内外期刊发表学术论文30余篇。