§ 3.2 洛必达法则

•未定式

在函数商的极限中，如果分子和分母同是无穷小或同是无穷大，那么极限可能存在，也可能不存在，这种极限称为未定式，记为 $\frac{0}{0}$ 或 $\frac{\infty}{\infty}$.

还有其它类型的未定式：$0 \cdot \infty$、$\infty - \infty$、0^0、1^∞、∞^0.
未定式举例

下列极限都是未定式:

$$\lim_{x \to 0} \frac{\sin x}{x} \left(\frac{0}{0} \text{型} \right)$$

$$\lim_{x \to +0} x^n \ln x \left(n>0, 0 \cdot \infty \text{型} \right)$$

$$\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x) \left(\infty - \infty \text{型} \right)$$

$$\lim_{x \to +0} x^x \left(0^0 \text{型} \right)$$

$$\lim_{x \to \infty} \left(x^2 + a^2 \right)^{\frac{1}{x^2}} \left(\infty^0 \text{型} \right)$$

$$\lim_{x \to +\infty} \frac{\ln x}{x^n} \left(n>0, \frac{\infty}{\infty} \text{型} \right)$$

$$\ln 0 = -\infty$$

三角函数在无定义处极限为无穷大

$$\lim_{x \to \infty} (1 + \frac{1}{x})^x \left(1^\infty \text{型} \right)$$
定理[洛必达(L’Hospital)法则]

如果函数$f(x)$和$g(x)$满足如下条件:
(1) $f(x)$和$g(x)$都是当$x\to a$时的无穷小(或无穷大);
(2) $f(x)$和$g(x)$在点a的某去心邻域内都可导且$g'(x)\neq 0$;
(3) $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ 存在(或为无穷大),

那么

$$
\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}.
$$

说明:

把定理中的“$x\to a$”换成“$x\to \infty$”，把条件(2)换成“当$|x|>X$时$f(x)$和$g(x)$都可导且$g'(x)\neq 0$”，结论仍然成立.
证明 定义辅助函数

\[f_1(x) = \begin{cases} f(x), & x \neq a \\ 0, & x = a \end{cases}, \quad g_1(x) = \begin{cases} g(x), & x \neq a \\ 0, & x = a \end{cases}, \]

在 \(U^0(a, \delta) \) 内任取一点 \(x \), 在以 \(a \) 与 \(x \) 为端点的区间上，
\(f_1(x), g_1(x) \) 满足柯西中值定理的条件，则有

\[
\frac{f_1(x) - f_1(a)}{g_1(x) - g_1(a)} = \frac{f'(\xi)}{g'(\xi)}, \quad (\xi \text{ 是 } x \text{ 与 } a \text{ 之间某一值})
\]

即 \(\frac{f(x)}{g(x)} = \frac{f'(\xi)}{g'(\xi)}, \) 当 \(x \to a \) 时，\(\xi \to a, \)

\[\therefore \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{\xi \to a} \frac{f'(\xi)}{g'(\xi)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}. \]
例1 求 $\lim_{x\to\pi} \frac{\sin 3x}{\sin 4x}$. $(\frac{0}{0})$

解 原式 $= \lim_{x\to\pi} \frac{(\sin 3x)'}{(\sin 4x)'} = \lim_{x\to\pi} \frac{3\cos 3x}{4\cos 4x} = -\frac{3}{4}.$

例2 求 $\lim_{x\to1} \frac{x^3 - 3x + 2}{x^3 - x^2 - x + 1}$. $(\frac{0}{0})$

解 原式 $= \lim_{x\to1} \frac{3x^2 - 3}{3x^2 - 2x - 1} = \lim_{x\to1} \frac{6x}{6x - 2} = \frac{3}{2}.$
例3 求 \(\lim_{x \to 1} \frac{\ln x - x + 1}{x^2 - 2x + 1} \). (\(\frac{0}{0} \))

解 原式 = \(\lim_{x \to 1} \frac{x}{2x - 2} = \lim_{x \to 1} \frac{1}{2} \cdot \frac{1}{x} = -\frac{1}{2} \).

例4 求 \(\lim_{x \to 0} \frac{e^x - 1 - x}{1 - \cos x} \). (\(\frac{0}{0} \))

解 原式 = \(\lim_{x \to 0} \frac{e^x - 1}{\sin x} = \lim_{x \to 0} \frac{e^x}{\cos x} = 1 \).
例5 求 \(\lim_{x \to 0} \frac{x - \sin x}{x^3} \). (\(\frac{0}{0} \))

解 \(\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{1 - \cos x}{3x^2} = \frac{1}{6} \).

例6 求 \(\lim_{x \to +\infty} \frac{\pi}{2} - \arctan x \). (\(\frac{0}{0} \))

解 \(\lim_{x \to +\infty} \frac{\pi}{2} - \arctan x = \lim_{x \to +\infty} \frac{1}{1 + x^2} = \lim_{x \to +\infty} \frac{x^2}{1 + x^2} = 1 \).
0型或∞型洛必达法则：\[\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \]

例7 求 \[\lim_{x \to +\infty} \frac{\ln x}{x^n} (n>0) \] (\(n \to \infty \))

解 \[\lim_{x \to +\infty} \frac{\ln x}{x^n} = \lim_{x \to +\infty} \frac{\ln x}{nx^{n-1}} = \lim_{x \to +\infty} \frac{1}{nx^n} = 0. \]

例8 求 \[\lim_{x \to +\infty} \frac{x^n}{e^{\lambda x}} (n 为正整数, \lambda>0) \] (\(n \to \infty \))

解 \[\lim_{x \to +\infty} \frac{x^n}{e^{\lambda x}} = \lim_{x \to +\infty} \frac{nx^{n-1}}{\lambda e^{\lambda x}} = \lim_{x \to +\infty} \frac{n(n-1)x^{n-2}}{\lambda^2 e^{\lambda x}} = \ldots \]

\[= \lim_{x \to +\infty} \frac{n!}{\lambda^n e^{\lambda x}} = 0. \]
例9 求 \(\lim_{x \to \frac{\pi}{2}} \frac{\tan x}{\tan 3x} \). (\(\infty \))

解1 原式 = \(\lim_{x \to \frac{\pi}{2}} \frac{\sec^2 x}{3 \sec^2 3x} \) = \(\frac{1}{3} \lim_{x \to \frac{\pi}{2}} \frac{\cos^2 3x}{\cos^2 x} \)

= \(\frac{1}{3} \lim_{x \to \frac{\pi}{2}} \left(-6 \cos 3x \sin 3x \right) \) = \(\lim_{x \to \frac{\pi}{2}} \frac{\sin 6x}{-2 \cos x \sin x} \)

= \(\lim_{x \to \frac{\pi}{2}} \frac{6 \cos 6x}{2 \cos 2x} \) = 3.

解2 原式 = \(\lim_{x \to \frac{\pi}{2}} \frac{\cot 3x}{\cot x} \) = \(\lim_{x \to \frac{\pi}{2}} \frac{-3 \csc^2 3x}{- \csc^2 x} \) = 3.
0 型或∞ 型洛必达法则：\(\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \)

注意：洛必达法则是求未定式的一种有效方法，但与其它求极限方法结合使用，效果更好。

例10 求 \(\lim_{x \to 0} \frac{\tan x - x}{x^2 \tan x} \)。

解 原式 = \(\lim_{x \to 0} \frac{\tan x - x}{x^3} \)

= \(\lim_{x \to 0} \frac{\sec^2 x - 1}{3x^2} \)

= \(\lim_{x \to 0} \frac{\tan^2 x}{3x^2} = \frac{1}{3} \).
0·∞型、∞−∞型极限计算：化为\(\frac{0}{0} \)型或\(\frac{∞}{∞} \)型。

例11 求 \(\lim_{x \to +0} x^n \ln x \) (\(n > 0 \)). (0·∞)

解 \(\lim_{x \to +0} x^n \ln x = \lim_{x \to +0} \frac{\ln x}{x^{-n}} = \lim_{x \to +0} \frac{x}{-nx^{-n-1}} = \lim_{x \to +0} \frac{-x^n}{n} = 0. \)

例12 求 \(\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right) \). (∞−∞)

解 原式 = \(\lim_{x \to 0} \frac{e^x - 1 - x}{x(e^x - 1)} = \lim_{x \to 0} \frac{e^x - 1}{e^x - 1 + xe^x} \)

= \(\lim_{x \to 0} \frac{e^x}{2e^x + xe^x} = \frac{1}{2} \).
0^0 型、1^\infty 型、\infty^0 型极限计算：取对数化为 \frac{0^0}{0} 型或 \frac{\infty}{\infty} 型.

\begin{align*}
\begin{array}{c}
0^0 \\
1^\infty \\
\infty^0
\end{array}
\end{align*}

\begin{align*}
\text{取对数} & \implies \\
\begin{cases}
0 \cdot \ln 0 \\
\infty \cdot \ln 1 \implies 0 \cdot \infty. \\
0 \cdot \ln \infty
\end{cases}
\end{align*}

\[\ln \lim u^v = \lim v \ln u = \lim \frac{\ln u}{v^{-1}} \implies \frac{0}{0} \text{型或} \frac{\infty}{\infty} \text{型} \]
例13 求 \(\lim_{x \to 0^+} x^{\tan x} \). (0\(^0\))

解 \(
\ln \lim_{x \to 0^+} x^{\tan x} = \lim_{x \to 0^+} \ln x^{\tan x} = \lim_{x \to 0^+} \tan x \ln x
\)
\(= \lim_{x \to 0^+} \frac{\ln x}{\cot x} = \lim_{x \to 0^+} \frac{x}{\cot x} - \csc^2 x\)
\(= -\lim_{x \to 0^+} \frac{\sin^2 x}{x} = 0,\)
\(\lim_{x \to 0^+} x^{\tan x} = e^0 = 1.\)

\[
\ln \lim u^v = \lim v \ln u = \lim \frac{\ln u}{v^{-1}} \Rightarrow \begin{cases} 0 \text{型或} & \infty \text{型} \\
0 \text{型} & \infty \text{型}
\end{cases}
\]
例14 求 \(\lim_{x \to 0} \frac{1}{x^2} \cos x \) \((1^\infty) \)。

解

\[
\ln \lim_{x \to 0} \frac{1}{x^2} \cos x = \lim_{x \to 0} \frac{\ln \cos x}{x^2} \\
= \lim_{x \to 0} \frac{-\tan x}{2x} = -\frac{1}{2}.
\]

\[
\lim_{x \to 0} \frac{1}{x^2} \cos x = e^{-1/2}.
\]

\[\ln \lim u^v = \lim v \ln u = \lim \frac{\ln u}{v^{-1}} \Rightarrow \frac{0}{0} \text{ 型或 } \frac{\infty}{\infty} \text{ 型}\]
例15 求 \(\lim_{x \to 0^+} (\cot x)^{\ln x} \). (\(\infty^0 \))

解

\[
\ln \lim_{x \to 0^+} (\cot x)^{\ln x} = \lim_{x \to 0^+} \frac{\ln \cot x}{\ln x} = \lim_{x \to 0^+} \frac{1}{\cot x} \cdot (-\csc^2 x) = \lim_{x \to 0^+} \frac{-x}{\cos x \cdot \sin x} = -1,
\]

原式 = \(e^{-1} \).

\[
\ln \lim u^v = \lim v \ln u = \lim \frac{\ln u}{v^{-1}} \Rightarrow 0^0 \text{型或} \infty^0 \text{型}
\]
思考题: 以下解法对否？

1. 求 \(\lim_{x \to \infty} \frac{x + \cos x}{x} \).

解 原式 = \(\lim_{x \to \infty} \frac{1 - \sin x}{1} = \lim_{x \to \infty} (1 - \sin x) \).

\[\lim_{x \to \infty} \frac{x + \cos x}{x} \text{不存在.} \]

2. 求 \(\lim_{x \to 0} \frac{e^x - 1}{\arccos x} \).

解 原式 = \(\lim_{x \to 0} \frac{e^x}{1 - \sqrt{1 - x^2}} = -1 \).

注意：洛必达法则的使用条件.
思考题：以下解法对否？

1. 求 \(\lim_{x \to \infty} \frac{x + \cos x}{x} \).

解 原式 = \(\lim_{x \to \infty} (1 + \frac{\cos x}{x}) = 1 \).

2. 求 \(\lim_{x \to 0} \frac{e^x - 1}{\arccos x} \).

解 原式 = \(\frac{0}{\pi} = 0 \).

注意：洛必达法则的使用条件.
作业

习题3-2 (P137):
2.
4.